MENGGABUNGKAN FOTO GRAFIK
Langkah 1: Membuat dokumen baru
Buat dokumen baru di Photoshop. Anda bebas untuk memilih apa pun dimensi yang dikehendaki, anda memilih 2000 x 1000 piksel untuk tutorial ini. Biarkan sisa pengaturan pada nilai standar.
Langkah 2: Menambahkan gradien
Pilih Gradient Tool (shift + g) dan untuk menetapkan pengaturan warna ke # 4ba614 dan # 008c00. Pilih lingkaran seperti gaya gradien dan menciptakan gradien dari pusat gambar Anda ke atas nya.
Langkah 3: Menambahkan beberapa teks
Sekarang saatnya untuk menggunakan font . Pilih Type Tool (t) dan pilih Candice atau Terserah Anda sebagai font tapi anda pakai Candice . Mengatur ukuran font-500 piksel (atau nilai yang sesuai dengan dimensi gambar Anda) dan ketik teks pilihan Anda.
Karena anda membuat-seperti efek permen anda mengetik "Candy".
Permen
Langkah 4: Centering teks
Setelah itu pilih latar belakang dan lapisan teks bersama-sama dengan mengklik pada mereka pada palet layer sambil memegang sebuah apel) ctrl-tombol (perintah jika yang Anda gunakan. Pastikan Anda memiliki Move Tool (v) yang dipilih. Sekarang Anda dapat pusat teks lapisan Anda secara vertikal dan horizontal dengan menggunakan tombol berjajar dalam palet pilihan Anda, yang secara default ditempatkan di atas ruang kerja Anda.
Rata Tombol
Langkah 5: Membuat pola kustom
Sekarang kita akan menciptakan pola kustom yang kita akan berlaku untuk teks kita nanti.
Membuat Dokumen Baru (ctrl + n) dan untuk menetapkan dimensi 200 x 200 piksel.
New Document
Langkah 6: Menambahkan dan berputar persegi panjang
Pilih Rectangle Tool (u) dan menciptakan sebuah persegi panjang dengan lebar 400 pixel dan tinggi 35 pixel. Merubah persegi panjang dengan menekan Ctrl + t ketika sedang dipilih dan putar 45 ° sambil menahan tombol Shift-bawah (seperti ini, persegi panjang berputar hanya dalam 15 °langkah). Pusat persegi panjang yang diputar di latar belakang seperti yang kita lakukan pada Langkah 5 dengan teks kami.
Diputar Rectangle
Langkah 7: Terapkan gradien
Klik kanan pada lapisan-persegi panjang dan pilih Blending Options. Pergi ke Gradient Overlay dan menetapkan gradien dengan warna # cc0000 dan # b50000. Mengatur sudut gradien untuk 135 °, gunakan linier sebagai gaya dan menerapkan gradien.
Gradient Pengaturan
Langkah 8: Multiply persegi panjang
Salin layer persegi panjang Anda dengan menekan Ctrl + j. Pilih Move Tool (masih v) dan pastikan Anda memiliki disalin lapisan baru dipilih, tahan-key dan tekan 5 kali Shift kiri dan 5 kali atas (dengan menekan tombol shift sambil bergerak-lapisan dengan tombol panah Anda membuat langkah 10 piksel. Itu berarti kami pindah kami lapisan 50 pixel ke kiri dan 50 pixel ke atas).
Copy disalin persegi panjang (Shape 1 copy) dan ulangi proses.
Pilih persegi panjang asli lagi, salin dan tekan 5 kali kanan dan ke bawah sambil menahan tombol shift. Salin persegi panjang terbaru dan ulangi proses.
Sekarang Anda memiliki 5 persegi panjang, masing-masing dengan lebar 50 pixel dan margin 50 pixel persegi panjang berikutnya.
Empat persegi panjang3
Langkah 9: Tentukan pola
Pergi ke Edit -> Define Pattern ... dan nama "baru pola Candy" pola. Pola ini secara otomatis akan muncul dalam pola terakhir membuat Anda digunakan.
Tentukan Pola
Langkah 10: Menerapkan opsi blending untuk teks
Kembali ke gambar asli kami dan klik kanan pada lapisan-teks. Buka Blending Options dan menerapkan gaya yang ditampilkan pada gambar di bawah. Gunakan Candy Pola dibuat pola baru sebagai overlay.
Blending Options
Langkah 11: Hampir sampai
Pilih Ellipse Tool (shift + u) dan menciptakan elips yang mencakup sekitar sepertiga atas jenis Anda. Pastikan warnanya putih.
Rasterize lapisan Anda dengan mengklik kanan dan memilih Rasterize.
Elips
Langkah 12: Bermain dengan pilihan
Ctrl +klik pada layer-teks untuk membuat pilihan di sekitar teks Anda dan tekan
Ctrl+Shift + i untuk membalikkan pilihan Anda. Pastikan Anda elips-lapisan dipilih dan tekan Hapus. Hanya bagian dari elips yang tumpang tindih dengan teks yang tersisa.
Ellipse Dihapus
Langkah 13: Menambahkan lapisan-mask
Sekarang membuat Layer Mask pada lapisan elips dan pilih Gradient Tool (shift + g). S Mengatur warna gradien untuk hitam (# 000000) dan putih (# ffffff) gaya dan linier. Tahan-tombol Shift untuk membuat lurus gradien sempurna dari titik tertinggi teks Anda mencapai titik terendah. Setelah gradien diterapkan ke lapisan masker Anda selesai.
Gradient Pengaturan
Gradient Terapan
Hasil akhir
Hasil Final
Langkah 1: Membuat dokumen baru
Buat dokumen baru di Photoshop. Anda bebas untuk memilih apa pun dimensi yang dikehendaki, anda memilih 2000 x 1000 piksel untuk tutorial ini. Biarkan sisa pengaturan pada nilai standar.
Langkah 2: Menambahkan gradien
Pilih Gradient Tool (shift + g) dan untuk menetapkan pengaturan warna ke # 4ba614 dan # 008c00. Pilih lingkaran seperti gaya gradien dan menciptakan gradien dari pusat gambar Anda ke atas nya.
Langkah 3: Menambahkan beberapa teks
Sekarang saatnya untuk menggunakan font . Pilih Type Tool (t) dan pilih Candice atau Terserah Anda sebagai font tapi anda pakai Candice . Mengatur ukuran font-500 piksel (atau nilai yang sesuai dengan dimensi gambar Anda) dan ketik teks pilihan Anda.
Karena anda membuat-seperti efek permen anda mengetik "Candy".
Permen
Langkah 4: Centering teks
Setelah itu pilih latar belakang dan lapisan teks bersama-sama dengan mengklik pada mereka pada palet layer sambil memegang sebuah apel) ctrl-tombol (perintah jika yang Anda gunakan. Pastikan Anda memiliki Move Tool (v) yang dipilih. Sekarang Anda dapat pusat teks lapisan Anda secara vertikal dan horizontal dengan menggunakan tombol berjajar dalam palet pilihan Anda, yang secara default ditempatkan di atas ruang kerja Anda.
Rata Tombol
Langkah 5: Membuat pola kustom
Sekarang kita akan menciptakan pola kustom yang kita akan berlaku untuk teks kita nanti.
Membuat Dokumen Baru (ctrl + n) dan untuk menetapkan dimensi 200 x 200 piksel.
New Document
Langkah 6: Menambahkan dan berputar persegi panjang
Pilih Rectangle Tool (u) dan menciptakan sebuah persegi panjang dengan lebar 400 pixel dan tinggi 35 pixel. Merubah persegi panjang dengan menekan Ctrl + t ketika sedang dipilih dan putar 45 ° sambil menahan tombol Shift-bawah (seperti ini, persegi panjang berputar hanya dalam 15 °langkah). Pusat persegi panjang yang diputar di latar belakang seperti yang kita lakukan pada Langkah 5 dengan teks kami.
Diputar Rectangle
Langkah 7: Terapkan gradien
Klik kanan pada lapisan-persegi panjang dan pilih Blending Options. Pergi ke Gradient Overlay dan menetapkan gradien dengan warna # cc0000 dan # b50000. Mengatur sudut gradien untuk 135 °, gunakan linier sebagai gaya dan menerapkan gradien.
Gradient Pengaturan
Langkah 8: Multiply persegi panjang
Salin layer persegi panjang Anda dengan menekan Ctrl + j. Pilih Move Tool (masih v) dan pastikan Anda memiliki disalin lapisan baru dipilih, tahan-key dan tekan 5 kali Shift kiri dan 5 kali atas (dengan menekan tombol shift sambil bergerak-lapisan dengan tombol panah Anda membuat langkah 10 piksel. Itu berarti kami pindah kami lapisan 50 pixel ke kiri dan 50 pixel ke atas).
Copy disalin persegi panjang (Shape 1 copy) dan ulangi proses.
Pilih persegi panjang asli lagi, salin dan tekan 5 kali kanan dan ke bawah sambil menahan tombol shift. Salin persegi panjang terbaru dan ulangi proses.
Sekarang Anda memiliki 5 persegi panjang, masing-masing dengan lebar 50 pixel dan margin 50 pixel persegi panjang berikutnya.
Empat persegi panjang3
Langkah 9: Tentukan pola
Pergi ke Edit -> Define Pattern ... dan nama "baru pola Candy" pola. Pola ini secara otomatis akan muncul dalam pola terakhir membuat Anda digunakan.
Tentukan Pola
Langkah 10: Menerapkan opsi blending untuk teks
Kembali ke gambar asli kami dan klik kanan pada lapisan-teks. Buka Blending Options dan menerapkan gaya yang ditampilkan pada gambar di bawah. Gunakan Candy Pola dibuat pola baru sebagai overlay.
Blending Options
Langkah 11: Hampir sampai
Pilih Ellipse Tool (shift + u) dan menciptakan elips yang mencakup sekitar sepertiga atas jenis Anda. Pastikan warnanya putih.
Rasterize lapisan Anda dengan mengklik kanan dan memilih Rasterize.
Elips
Langkah 12: Bermain dengan pilihan
Ctrl +klik pada layer-teks untuk membuat pilihan di sekitar teks Anda dan tekan
Ctrl+Shift + i untuk membalikkan pilihan Anda. Pastikan Anda elips-lapisan dipilih dan tekan Hapus. Hanya bagian dari elips yang tumpang tindih dengan teks yang tersisa.
Ellipse Dihapus
Langkah 13: Menambahkan lapisan-mask
Sekarang membuat Layer Mask pada lapisan elips dan pilih Gradient Tool (shift + g). S Mengatur warna gradien untuk hitam (# 000000) dan putih (# ffffff) gaya dan linier. Tahan-tombol Shift untuk membuat lurus gradien sempurna dari titik tertinggi teks Anda mencapai titik terendah. Setelah gradien diterapkan ke lapisan masker Anda selesai.
Gradient Pengaturan
Gradient Terapan
Hasil akhir
Hasil Final
Kirimkan Ini lewat Email
MATEMATIKA
Materi Peluang.
Silahkan anda pelajari materi peluang ini yang saya sajikan secara ringkas melalui contoh-contoh sederhana.
A. KAIDAH PENCACAHAN
1. Aturan Pengisian Tempat
Andi diundang menghadiri acara ulang tahun temannya. Andi mempunyai tiga buah baju dua buah celana.
Baju : Merah, Kuning, Ungu
Celana : Hitam, Biru
Ada berapa cara Andi dapat mamasang-masangkan baju dan celananya?
Penyelesaian:
Banyaknya pasangan celana dan baju yang dapat dipakai Andi ada 6 yaitu:
{(hitam, kuning), (hitam, merah), (hitam, ungu),(biru, kuning), (biru, merah), (biru, ungu)}
2. Faktorial
Definisi:
n! = 1 × 2 × 3 × …× (n – 2) × (n – 1) × n atau
n! = n × (n – 1) × (n – 2) × … × 3 × 2 × 1
1! = 1 dan 0! = 1
Untuk lebih memahami tentang faktorial, perhatikan contoh berikut.
1. 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720
2. 3! × 2 ! = 3 × 2 × 1 × 2 × 1 = 6 × 2 = 12
7! 7×6×5×4×3×2×1
3. —— = ———————— = 7 × 6 × 5 = 210
4! 4×3×2×1
3. Permutasi
Dari 5 orang calon pengurus akan dipilih 3 orang untuk menempati posisi sebagai ketua, sekretaris, dan bendahara. Ada berapa banyak cara memilih pengurus ?
Penyelesaian:
Untuk menjawab hal tersebut marilah kita gambarkan 3 tempat kosong yang akan diisi dari 5 calon pengurus yang tersedia.
5
x
4
x
3
Kotak (a) dapat diisi dengan 5 calon karena calonnya ada 5
Kotak (b) dapat diisi dengan 4 calon karena 1 calon sudah diisikan di kotak (a).
Kotak (c) dapat diisi dengan 3 calon karena 2 calon sudah diisikan di kotak sebelumnya.
Sehingga banyaknya susunan pengurus kelas adalah 5 × 4 × 3 = 60.
Susunan semacam ini disebut permutasi karena urutannya diperhatikan, sebab ketua, sekretaris, bendahara tidak sama dengan sekretaris, ketua, bendahara.
a. Permutasi r unsur dari n unsur berbeda
Permutasi pada contoh ini disebut permutasi 3 dari 5 unsur dan
dinotasikan dengan P(5.3) atau 5P3, sehingga:
5P3 = 5 × 4 × 3
= 5 × (5 – 1) × (5 – 2)
= 5 × (5 – 1) × …..× (5 – 3 + 1),
Secara umum dapat diperoleh kesimpulan sebagai berikut.
Banyaknya permutasi dari n unsur diambil r unsur dinotasikan:
nPr = n (n – 1) (n – 2) (n – 3) … (n – r + 1)
Atau dapat juga ditulis:
(n – r) (n – r – 1) … 3.2.1
nPr =n (n – 1) (n – 2) (n – 3) … (n – r + 1) x ——————————
(n – r) (n – r – 1) … 3.2.1
n (n – 1) (n – 2) (n – 3) … (n – r + 1)(n – r) (n – r – 1) … 3.2.1
nPr =——————————————————————————
(n – r) (n – r – 1) … 3.2.1
n!
nPr =————
(n – r)!
Contoh:
Akan disusun berjajar bendera negara-negara: Inggris, Prancis, Jerman, Belanda, Spanyol dan Yunani. Tentukan banyaknya cara memasang bendera tersebut jika bendera Inggris dan Prancis harus selalu berdampingan !
Penyelesaian:
Banyaknya negara ada 6 tetapi Inggris dan Prancis harus berdampingan sehingga Inggris dan Prancis dihitung 1. Jadi banyaknya negara ada 5,
untuk menyusun benderanya 5P5 = 5!
Inggris dan Prancis dapat bertukar posisi sebanyak 2!
Banyaknya cara = 5! x 2!
= 5 x 4 x 3 x 2 x 1 x 2 x 1
= 240
b. Permutasi Jika Ada Unsur yang Sama
Untuk menghitung banyaknya permutasi jika ada unsur yang sama, marilah kita lihat contoh berikut.
Berapakah banyaknya kata yang dapat disusun dari huruf-huruf pembentuk kata: A, D, A, M ?
Penyelesaian:
Banyaknya kata = {(ADAM), (ADMA), (AMAD), (AMDA), (AAMD), (AADM), (DAAM), (DAMA), (DMAA), (MAAD), (MADA), (MDAA)}
ternyata banyaknya kata hanya ada 12, hal ini berbeda kalau tidak ada huruf yang sama banyaknya cara ada 4! = 24
Dari contoh dapat dijabarkan 12 = 4 × 3 atau permutasi 4 unsur dengan 2
4!
unsur sama ditulis: ——
2!
Secara umum banyaknya permutasi n unsur yang memuat k, l, dan m unsur yang sama dapat ditentukan dengan rumus:
n!
P = ————
k! l! m!
Perhatikan simulasi berikut!
Contoh 6:
Berapakah banyaknya kata yang dapat dibentuk dari huruf-huruf pembentuk kata MATEMATIKA?
Penyelesaian:
MATEMATIKA
Banyak huruf =10
banyak M = 2
banyak A =3
banyak T = 2
10! 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1
P = ———— = —————————————————
2! 3! 2! 2 x 1 x 3 x 2 x 1 x 2 x 1
3628800
P = ———— = 151200
24
Banyaknya kata yang dapat dibentuk ada 151200 kata
c. Permutasi Siklis
Andi, Budi dan Candra hendak duduk mengelilingi sebuah meja. Berapakah banyak cara mereka dapat duduk mengelilingi meja tersebut?
Kalau mereka duduk berjajar banyaknya cara ada 3! = 6 yaitu
{ABC, ACB, BAC, BCA, CAB, CBA}
Bagaimana kalau mereka mengelilingi sebuah meja ?
Kemungkinan 1 diperoleh bahwa ABC = CAB = BCA
Kemungkinan 2 diperoleh bahwa ACB = CBA = BAC
Sehingga banyak cara mereka duduk hanya ada 2 cara
ternyata banyaknya cara 3 orang duduk mengelilingi sebuah meja = (3 - 1)!
Secara umum banyaknya permutasi siklis dapat ditentukan dengan rumus:
P= (n - 1)!
Contoh 7:
Berapakah banyaknya cara 8 orang dapat duduk mengelilingi api unggun jika 2 orang tertentu harus selalu berdampingan?
Penyelesaian:
Banyaknya orang ada 8 tetapi dua orang tertentu harus berdampingan (dihitung satu) sehingga banyaknya orang ada 7,
Permutasi siklis 7 orang = (7 - 1)!
Dua orang yang berdampingan dapat bertukar posisi sebanyak 2!
Banyaknya cara = 6! x 2!
= 6 x 5 x 4 x 3 x 2 x 1 x 2 x 1
= 1440
4. Kombinasi
Ada tiga sahabat yang baru bertemu setelah sekian lama, mereka adalah
Adi, Budi, dan Candra. Saat bertemu mereka saling berjabat tangan, tahukah kamu berapa banyak jabat tangan yang terjadi?
Adi berjabat tangan dengan Budi ditulis {Adi, Budi}.
Budi berjabat tangan dengan Adi ditulis {Budi, Adi}.
Antara {Adi, Budi} dan {Budi, Adi} menyatakan himpunan yang sama, hal ini disebut kombinasi. Di lain pihak {Adi, Budi}, {Budi, Adi} menunjukkan urutan yang berbeda yang berarti merupakan permutasi yang berbeda.
Dari contoh dapat diambil kesimpulan:
Permutasi = Adi – Budi, Adi – Candra, Budi – Adi,
Budi – Candra, Candra – Adi, Candra – Budi
= 6 karena urutan diperhatikan
Kombinasi = Adi – Budi, Adi – Candra, Budi – Candra
= 3 karena urutan tidak diperhatikan
6 permutasi
Kombinasi = 3 =—— = ——————
2 2
Jadi kombinasi dari 3 unsur diambil 2 unsur ditulis:
3P2 3!
3C2 = —— = ————
2 2! (3 − 2)!
Secara umum dapat disimpulkan bahwa:
Banyaknya kombinasi dari n unsur yang berbeda diambil r unsur
n
ditulis dengan C atau C(n. r) atau nCr, sehingga:
r
P n!
nCr =———— = ————
r! (n - r)! r!
Perhatikan contoh soal berikut untuk lebih memahami tentang kombinasi.
Contoh 8:
1. Hitunglah nilai dari:
a. 8C4
b. 6C2 × 4C3
Penyelesaian:
8! 8! 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1
a. 8C4 =———— =——— =———————————— = 70
(8 - 4)! 4! 4! 4! 4 x 3 x 2 x 1 x 4 x 3 x 2 x 1
6! 4! 6 x 5 x 4 x 3 x 2 x 1 4 x 3 x 2 x 1
b. 6C2 × 4C3 =———— x ———— =————————— x —————= 70
(6 - 2)! 2! (4 - 3)! 3! 4 x 3 x 2 x 1 x 2 x 1 1 x 3 x 2 x 1
Penyelesaian:
10!
10C3 =—————
(10 - 3)! 3!
10!
=—————
7! 3!
10 x 9 x 8 x 7!
=——————
7! 3 x 2 x 1
720
=———
6
= 120
Contoh 10:
Dalam pelatihan bulutangkis terdapat 8 orang pemain putra dan 6 orang pemain
putri. Berapakah pasangan ganda yang dapat diperoleh untuk:
a. ganda putra
b. ganda putri
c. ganda campuran
Penyelesaian:
a. Karena banyaknya pemain putra ada 8 dan dipilih 2, maka banyak cara ada:
8! 8 . 7 . 6 ! 56
8C2 =———— = ———— = —— = 28
(8 - 2)! 2! 6! . 2. 1 2
b. Karena banyaknya pemain putri ada 6 dan dipilih 2, maka banyak cara ada:
6! 6 . 5 . 4 ! 30
6C2 =———— = ———— = —— = 15
(6 - 2)! 2! 4! . 2. 1 2
c. Ganda campuran berarti 8 putra diambil satu dan 6 putri diambil 1, maka:
8! 6! 8! 6!
8C1 x 6C1 =———— x ———— = —— x —— = 8 x 6 = 48
(8 - 1)! 1! (6 - 1)! 1! 7! 5!
Contoh 11:
Dari 7 siswa putra dan 3 siswa putri akan dibentuk tim yang beranggotakan 5 orang. Jika disyaratkan anggota tim tersebut paling banyak 2 orang putri, berapakah banyaknya cara mambentuk tim tersebut?
Penyelesaian:
Karena anggota tim ada 5 dan paling banyak 2 putri maka kemungkinannya adalah: 5 putra atau 4 putra 1 putri atau 3 putra 2 putri
Banyak cara memilih 5 putra =7C5
Banyak cara memilih 4 putra 1 putri =7C4 . 3C1
Banyak cara memilih 3 putra 2 putri =7C3 . 3C2
Banyak cara = 7C5 + 7C4 . 3C1 + 7C3 . 3C2
7! 7! 3! 7! 3!
= ———— + ———— x ———— + ———— x ————
(7 - 5)! 5! (7 - 4)! 4! (3 - 1)! 1! (7 - 3)! 3! (3 - 2)! 2!
7 . 6 . 5! 7 . 6 . 5 . 4! 3 . 2 . 1 7 . 6 . 5 . 4! 3 . 2 . 1
= ———— + ————— x ——— + ————— x ————
2 . 1 . 5! 3 . 2 . 1 . 4! 2 . 1 4! . 3 . 2 . 1 2 . 1
= 105 + 105 + 21 = 231
Jadi banyaknya cara membentuk tim ada 231 cara
B. RUANG SAMPEL DAN KEJADIAN
1. Ruang Sampel
Tahukah kamu, apa saja yang mungkin muncul ketika sebuah dadu dilempar sekali ?
Kemungkinan yang muncul adalah mata dadu 1, 2, 3, 4, 5 atau 6.
Jadi banyaknya himpunan semua kejadian yang mungkin pada pelemparan sebuah dadu sekali ada 6.
Himpunan semua kejadian yang mungkin dari suatu percobaan disebut Ruang Sampel atau Ruang Contoh biasa diberi lambang huruf S
Bagaimana kalau sebuah koin uang logam dilemparkan sekali, apa saja yang mungkin muncul?
S = {Angka, gambar}
n(S) = 2
2. Kejadian
Kejadian merupakan himpunan bagian dari ruang sampel.
Contoh 14:
Dua buah dadu dilemparkan bersamaan sekali, tentukan kejadian munculnya
a. jumlah kedua dadu 10
b. selisih kedua dadu 3
c. jumlah kedua dadu 5 dan selisihnya 1
d. jumlah kedua dadu 4 atau selisihnya 5
Penyelesaian:
Untuk mengerjakan soal ini kita lihat jawaban contoh 13.
a. Jumlah kedua dadu 10 ={(4, 6), (5, 5), (6, 4)}
Jadi banyaknya kejadian ada 3
b. Selisih kedua dadu 3 ={(1, 4), (2, 5), (3, 6), (4, 1), (5, 2), (6, 3)}
Jadi banyaknya kejadian ada 6
c. Jumlah kedua dadu 5 dan selisihnya 1 ={(2, 3), (3, 2)}
Jadi banyaknya kejadian ada 2
d. Jumlah kedua dadu 4 atau selisihnya 5 ={(1, 3), (2, 2), (3, 1), (1, 6), (6, 1}
Jadi banyaknya kejadian ada 5
C. PELUANG SUATU KEJADIAN
1. Peluang Suatu Kejadian
Sebelum mempelajari peluang suatu kejadian, marilah kita ingat kembali mengenai ruang sampel yang biasanya dilambangkan dengan S. Kejadian adalah himpunan bagian dari ruang sampel, sedangkan titik sampel adalah setiap hasil yang mungkin terjadi pada suatu percobaan. Jika A adalah suatu kejadian yang terjadi pada suatu percobaan dengan ruang sampel S, di mana setiap titik sampelnya mempunyai kemungkinan sama untuk muncul, maka peluang dari suatu kejadian A ditulis sebagai berikut.
n(A)
P(A) = ———
n(S )
Keterangan:
P(A) = peluang kejadian A
n(A) = banyaknya anggota A
n(S) = banyaknya anggota ruang sampel S
Contoh :
Pada pelemparan 3 buah uang sekaligus, tentukan peluang muncul:
a. ketiganya sisi gambar;
b. satu gambar dan dua angka.
Penyelesaian:
a. S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}
Maka n(S) = 8
Misal kejadian ketiganya sisi gambar adalah A.
A = {GGG}, maka n(A) = 1
n(A) 1
P(A) = ——— =——
n(S ) 8
b. Misal kejadian satu gambar dan dua angka adalah B.
B = {AAG, AGA, GAA}, maka n(B) = 3
n(B) 3
P(B) = ——— =——
n(S ) 8
Contoh:
Andi mengikuti acara Jalan Santai dengan doorprize 5 buah sepeda motor. Jika jalan santai tersebut diikuti oleh 1000 orang, berapakah peluang Andi mendapatkan doorprize sepeda motor?
Penyelesaian:
S = semua peserta jalan santai
maka n(S) = 1000
Misal kejadian Andi mendapatkan motor adalah A.
A = {Motor1, Motor2, Motor3, Motor4, Motor5}
maka n(A) = 5
n(A) 5 1
P(A) = ——— = ——— = ——
n(S ) 1000 200
1
Jadi peluang Andi mendapatkan doorprize sepeda motor ——
200
2. Kisaran Nilai Peluang
Untuk mengetahui kisaran nilai peluang, perhatikan soal berikut:
Contoh 18:
Sebuah dadu dilemparkan sekali, tentukan peluang munculnya
a. Mata dadu 8 b. Mata dadu kurang dari 7
Penyelesaian:
a. S = {1, 2, 3, 4, 5, 6}, n(S) = 6
misal kejadian muncul mata dadu 8 adalah A
A = { }, n(A) = 0
n(A) 0
P(A) = ——— = — = 0
n(S ) 6
Kejadian muncul mata dadu 8 adalah kejadian mustahil, P(A) = 0
b. S = {1, 2, 3, 4, 5, 6}, n(S) = 6
misal kejadian muncul mata dadu kurang dari 7 adalah B
B = {1, 2, 3, 4, 5, 6}, n(B) = 6
n(B) 6
P(B) = ——— = — = 1
n(S ) 6
Kejadian muncul mata dadu kurang dari 7 adalah kejadian pasti, P(A) = 1
Jadi kisaran nilai peluang: 0 ≤ P(A) ≤ 1
3. Frekuensi Harapan Suatu Kejadian
Frekuensi harapan dari sejumlah kejadian merupakan banyaknya kejadian dikalikan dengan peluang kejadian itu. Misalnya pada percobaan A dilakukan n kali, maka frekuensi harapannya ditulis sebagai berikut.
Fh = n × P(A)
Contoh 19:
Pada percobaan pelemparan 3 mata uang logam sekaligus sebanyak 240 kali, tentukan frekuensi harapan munculnya dua gambar dan satu angka.
Penyelesaian:
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG} ⇒ n(S) = 8
A = {AGG, GAG, GGA} ⇒ n(A) = 3
n(A) 3
Fh(A) = n × P(A) = 240 × —— = 240 × —— = 90 kali
n(S) 8
4. Peluang Komplemen Suatu Kejadian
Untuk mempelajari peluang komplemen, perhatikan contoh berikut.
Contoh:
Pada pelemparan sebuah dadu sekali, berapakah peluang munculnya:
a. nomor dadu ganjil,
b. nomor dadu tidak ganjil?
Penyelesaian:
a. S = {1, 2, 3, 4, 5, 6}, maka n(S) = 6.
A adalah kejadian keluar nomor dadu ganjil
A = {1, 3, 5}, maka n(A) = 3 sehingga
n(A) 3 1
P(A) = ——— =—— = —
n(S ) 6 2
b. B adalah kejadian keluar nomor dadu tidak ganjil
B = {2, 4, 6}, maka n(B) = 3 sehingga
n(B) 3 1
P(B) = ——— =—— = — , Peluang B adalah Peluang komplemen dari A
n(S ) 6 2
Dari contoh tersebut kita dapat mengambil kesimpulan bahwa:
P(A) + P(AC) = 1 atau P(AC) = 1 – P(A)
Contoh:
Pada pelemparan 3 buah uang sekaligus, tentukan peluang munculnya paling
sedikit satu angka !
Penyelesaian:
Cara biasa
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}, maka n(S) = 8
Misal kejadian paling sedikit satu angka adalah A.
A = {AAA, AAG, AGA, GAA, AGG, GAG, GGA}, maka n(A) = 7
n(A) 7
P(A) = ——— =——
n(S ) 8
Cara komplemen
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}, maka n(S) = 8
Misal kejadian paling sedikit satu angka adalah A.
Ac = {GGG}, maka n(Ac) =1
n(Ac) 1
P(Ac) = ——— =——
n(S ) 8
1 7
P(A) = 1 – P(Ac) = 1 – —— = ——
8 8
5. Peluang Kejadian Majemuk
a. Peluang Gabungan 2 kejadian
Misal A dan B adalah dua kejadian yang berbeda, maka peluang kejadian
A ∪ B ditentukan dengan aturan:
P(A ∪ B) = P(A) + P(B) – P(A∩B)
Contoh:
Sebuah dadu dilambungkan sekali, jika A adalah kejadian munculnya bilangan ganjil dan B adalah kejadian munculnya bilangan prima. Tentukan peluang kejadian munculnya bilangan ganjil atau prima!
Penyelesaian:
S = {1, 2, 3, 4, 5, 6}
A = bilangan ganjil : {1, 3, 5} → P(A) = 3/6
B = bilangan prima : {2, 3, 5} → P(B) =3/6
A∩B = {3, 5} → P{A∩B} = 2/6
P(A∪ B) = P(A) + P(B) – P(A∩B)
= 3/6 + 3/6 – 2/6 = 4/6 = 2/3
Jadi peluang kejadian munculnya bilangan ganjil atau prima adalah 2/3
Contoh:
Diambil sebuah kartu dari 1 set kartu bridge, tentukan peluang terambilnya kartu As atau kartu Hati!
Penyelesaian:n(S) = 52 (karena banyaknya kartu dalam 1 set kartu bridge 52)
A = kartu As, n(A) = 4 (Banyaknya kartu As dalam1 set kartu bridge 4)
4
P(A) = ——
52
B = kartu Hati, n(B) = 13 (Banyaknya kartu Hati dalam1 set kartu bridge 13)
13
P(B) = ——
52
n(A∩B) = 1 (Banyaknya Kartu As dan Hati dalam1 set kartu bridge 1)
1
P(A∩B) = ——
52
4 13 1 16
P(A∪ B) = P(A) + P(B) – P(A∩B) = —— + —— – —— =——
52 52 52 52
16
Jadi peluang kejadian terambilnya kartu As atau Hati adalah ——
52
b. Peluang Kejadian Saling Lepas (Saling Asing)
Kejadian A dan B saling asing jika kedua kejadian tersebut tidak mungkin terjadi bersama-sama. Ini berarti A∩B = 0 atau P(A∩B) = 0
Sehingga: P (A∪ B) = P(A) + P(B) – P(A∩B) = P(A) + P(B) – 0
P (A∪ B) = P(A) + P(B)
Contoh:
Sebuah dadu dilambungkan sekali, jika A adalah kejadian munculnya bilangan ganjil dan B adalah kejadian munculnya bilangan genap. Tentukan peluang kejadian munculnya bilangan ganjil atau genap!
Materi Peluang.
Silahkan anda pelajari materi peluang ini yang saya sajikan secara ringkas melalui contoh-contoh sederhana.
A. KAIDAH PENCACAHAN
1. Aturan Pengisian Tempat
Andi diundang menghadiri acara ulang tahun temannya. Andi mempunyai tiga buah baju dua buah celana.
Baju : Merah, Kuning, Ungu
Celana : Hitam, Biru
Ada berapa cara Andi dapat mamasang-masangkan baju dan celananya?
Penyelesaian:
Banyaknya pasangan celana dan baju yang dapat dipakai Andi ada 6 yaitu:
{(hitam, kuning), (hitam, merah), (hitam, ungu),(biru, kuning), (biru, merah), (biru, ungu)}
2. Faktorial
Definisi:
n! = 1 × 2 × 3 × …× (n – 2) × (n – 1) × n atau
n! = n × (n – 1) × (n – 2) × … × 3 × 2 × 1
1! = 1 dan 0! = 1
Untuk lebih memahami tentang faktorial, perhatikan contoh berikut.
1. 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720
2. 3! × 2 ! = 3 × 2 × 1 × 2 × 1 = 6 × 2 = 12
7! 7×6×5×4×3×2×1
3. —— = ———————— = 7 × 6 × 5 = 210
4! 4×3×2×1
3. Permutasi
Dari 5 orang calon pengurus akan dipilih 3 orang untuk menempati posisi sebagai ketua, sekretaris, dan bendahara. Ada berapa banyak cara memilih pengurus ?
Penyelesaian:
Untuk menjawab hal tersebut marilah kita gambarkan 3 tempat kosong yang akan diisi dari 5 calon pengurus yang tersedia.
5
x
4
x
3
Kotak (a) dapat diisi dengan 5 calon karena calonnya ada 5
Kotak (b) dapat diisi dengan 4 calon karena 1 calon sudah diisikan di kotak (a).
Kotak (c) dapat diisi dengan 3 calon karena 2 calon sudah diisikan di kotak sebelumnya.
Sehingga banyaknya susunan pengurus kelas adalah 5 × 4 × 3 = 60.
Susunan semacam ini disebut permutasi karena urutannya diperhatikan, sebab ketua, sekretaris, bendahara tidak sama dengan sekretaris, ketua, bendahara.
a. Permutasi r unsur dari n unsur berbeda
Permutasi pada contoh ini disebut permutasi 3 dari 5 unsur dan
dinotasikan dengan P(5.3) atau 5P3, sehingga:
5P3 = 5 × 4 × 3
= 5 × (5 – 1) × (5 – 2)
= 5 × (5 – 1) × …..× (5 – 3 + 1),
Secara umum dapat diperoleh kesimpulan sebagai berikut.
Banyaknya permutasi dari n unsur diambil r unsur dinotasikan:
nPr = n (n – 1) (n – 2) (n – 3) … (n – r + 1)
Atau dapat juga ditulis:
(n – r) (n – r – 1) … 3.2.1
nPr =n (n – 1) (n – 2) (n – 3) … (n – r + 1) x ——————————
(n – r) (n – r – 1) … 3.2.1
n (n – 1) (n – 2) (n – 3) … (n – r + 1)(n – r) (n – r – 1) … 3.2.1
nPr =——————————————————————————
(n – r) (n – r – 1) … 3.2.1
n!
nPr =————
(n – r)!
Contoh:
Akan disusun berjajar bendera negara-negara: Inggris, Prancis, Jerman, Belanda, Spanyol dan Yunani. Tentukan banyaknya cara memasang bendera tersebut jika bendera Inggris dan Prancis harus selalu berdampingan !
Penyelesaian:
Banyaknya negara ada 6 tetapi Inggris dan Prancis harus berdampingan sehingga Inggris dan Prancis dihitung 1. Jadi banyaknya negara ada 5,
untuk menyusun benderanya 5P5 = 5!
Inggris dan Prancis dapat bertukar posisi sebanyak 2!
Banyaknya cara = 5! x 2!
= 5 x 4 x 3 x 2 x 1 x 2 x 1
= 240
b. Permutasi Jika Ada Unsur yang Sama
Untuk menghitung banyaknya permutasi jika ada unsur yang sama, marilah kita lihat contoh berikut.
Berapakah banyaknya kata yang dapat disusun dari huruf-huruf pembentuk kata: A, D, A, M ?
Penyelesaian:
Banyaknya kata = {(ADAM), (ADMA), (AMAD), (AMDA), (AAMD), (AADM), (DAAM), (DAMA), (DMAA), (MAAD), (MADA), (MDAA)}
ternyata banyaknya kata hanya ada 12, hal ini berbeda kalau tidak ada huruf yang sama banyaknya cara ada 4! = 24
Dari contoh dapat dijabarkan 12 = 4 × 3 atau permutasi 4 unsur dengan 2
4!
unsur sama ditulis: ——
2!
Secara umum banyaknya permutasi n unsur yang memuat k, l, dan m unsur yang sama dapat ditentukan dengan rumus:
n!
P = ————
k! l! m!
Perhatikan simulasi berikut!
Contoh 6:
Berapakah banyaknya kata yang dapat dibentuk dari huruf-huruf pembentuk kata MATEMATIKA?
Penyelesaian:
MATEMATIKA
Banyak huruf =10
banyak M = 2
banyak A =3
banyak T = 2
10! 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1
P = ———— = —————————————————
2! 3! 2! 2 x 1 x 3 x 2 x 1 x 2 x 1
3628800
P = ———— = 151200
24
Banyaknya kata yang dapat dibentuk ada 151200 kata
c. Permutasi Siklis
Andi, Budi dan Candra hendak duduk mengelilingi sebuah meja. Berapakah banyak cara mereka dapat duduk mengelilingi meja tersebut?
Kalau mereka duduk berjajar banyaknya cara ada 3! = 6 yaitu
{ABC, ACB, BAC, BCA, CAB, CBA}
Bagaimana kalau mereka mengelilingi sebuah meja ?
Kemungkinan 1 diperoleh bahwa ABC = CAB = BCA
Kemungkinan 2 diperoleh bahwa ACB = CBA = BAC
Sehingga banyak cara mereka duduk hanya ada 2 cara
ternyata banyaknya cara 3 orang duduk mengelilingi sebuah meja = (3 - 1)!
Secara umum banyaknya permutasi siklis dapat ditentukan dengan rumus:
P= (n - 1)!
Contoh 7:
Berapakah banyaknya cara 8 orang dapat duduk mengelilingi api unggun jika 2 orang tertentu harus selalu berdampingan?
Penyelesaian:
Banyaknya orang ada 8 tetapi dua orang tertentu harus berdampingan (dihitung satu) sehingga banyaknya orang ada 7,
Permutasi siklis 7 orang = (7 - 1)!
Dua orang yang berdampingan dapat bertukar posisi sebanyak 2!
Banyaknya cara = 6! x 2!
= 6 x 5 x 4 x 3 x 2 x 1 x 2 x 1
= 1440
4. Kombinasi
Ada tiga sahabat yang baru bertemu setelah sekian lama, mereka adalah
Adi, Budi, dan Candra. Saat bertemu mereka saling berjabat tangan, tahukah kamu berapa banyak jabat tangan yang terjadi?
Adi berjabat tangan dengan Budi ditulis {Adi, Budi}.
Budi berjabat tangan dengan Adi ditulis {Budi, Adi}.
Antara {Adi, Budi} dan {Budi, Adi} menyatakan himpunan yang sama, hal ini disebut kombinasi. Di lain pihak {Adi, Budi}, {Budi, Adi} menunjukkan urutan yang berbeda yang berarti merupakan permutasi yang berbeda.
Dari contoh dapat diambil kesimpulan:
Permutasi = Adi – Budi, Adi – Candra, Budi – Adi,
Budi – Candra, Candra – Adi, Candra – Budi
= 6 karena urutan diperhatikan
Kombinasi = Adi – Budi, Adi – Candra, Budi – Candra
= 3 karena urutan tidak diperhatikan
6 permutasi
Kombinasi = 3 =—— = ——————
2 2
Jadi kombinasi dari 3 unsur diambil 2 unsur ditulis:
3P2 3!
3C2 = —— = ————
2 2! (3 − 2)!
Secara umum dapat disimpulkan bahwa:
Banyaknya kombinasi dari n unsur yang berbeda diambil r unsur
n
ditulis dengan C atau C(n. r) atau nCr, sehingga:
r
P n!
nCr =———— = ————
r! (n - r)! r!
Perhatikan contoh soal berikut untuk lebih memahami tentang kombinasi.
Contoh 8:
1. Hitunglah nilai dari:
a. 8C4
b. 6C2 × 4C3
Penyelesaian:
8! 8! 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1
a. 8C4 =———— =——— =———————————— = 70
(8 - 4)! 4! 4! 4! 4 x 3 x 2 x 1 x 4 x 3 x 2 x 1
6! 4! 6 x 5 x 4 x 3 x 2 x 1 4 x 3 x 2 x 1
b. 6C2 × 4C3 =———— x ———— =————————— x —————= 70
(6 - 2)! 2! (4 - 3)! 3! 4 x 3 x 2 x 1 x 2 x 1 1 x 3 x 2 x 1
Penyelesaian:
10!
10C3 =—————
(10 - 3)! 3!
10!
=—————
7! 3!
10 x 9 x 8 x 7!
=——————
7! 3 x 2 x 1
720
=———
6
= 120
Contoh 10:
Dalam pelatihan bulutangkis terdapat 8 orang pemain putra dan 6 orang pemain
putri. Berapakah pasangan ganda yang dapat diperoleh untuk:
a. ganda putra
b. ganda putri
c. ganda campuran
Penyelesaian:
a. Karena banyaknya pemain putra ada 8 dan dipilih 2, maka banyak cara ada:
8! 8 . 7 . 6 ! 56
8C2 =———— = ———— = —— = 28
(8 - 2)! 2! 6! . 2. 1 2
b. Karena banyaknya pemain putri ada 6 dan dipilih 2, maka banyak cara ada:
6! 6 . 5 . 4 ! 30
6C2 =———— = ———— = —— = 15
(6 - 2)! 2! 4! . 2. 1 2
c. Ganda campuran berarti 8 putra diambil satu dan 6 putri diambil 1, maka:
8! 6! 8! 6!
8C1 x 6C1 =———— x ———— = —— x —— = 8 x 6 = 48
(8 - 1)! 1! (6 - 1)! 1! 7! 5!
Contoh 11:
Dari 7 siswa putra dan 3 siswa putri akan dibentuk tim yang beranggotakan 5 orang. Jika disyaratkan anggota tim tersebut paling banyak 2 orang putri, berapakah banyaknya cara mambentuk tim tersebut?
Penyelesaian:
Karena anggota tim ada 5 dan paling banyak 2 putri maka kemungkinannya adalah: 5 putra atau 4 putra 1 putri atau 3 putra 2 putri
Banyak cara memilih 5 putra =7C5
Banyak cara memilih 4 putra 1 putri =7C4 . 3C1
Banyak cara memilih 3 putra 2 putri =7C3 . 3C2
Banyak cara = 7C5 + 7C4 . 3C1 + 7C3 . 3C2
7! 7! 3! 7! 3!
= ———— + ———— x ———— + ———— x ————
(7 - 5)! 5! (7 - 4)! 4! (3 - 1)! 1! (7 - 3)! 3! (3 - 2)! 2!
7 . 6 . 5! 7 . 6 . 5 . 4! 3 . 2 . 1 7 . 6 . 5 . 4! 3 . 2 . 1
= ———— + ————— x ——— + ————— x ————
2 . 1 . 5! 3 . 2 . 1 . 4! 2 . 1 4! . 3 . 2 . 1 2 . 1
= 105 + 105 + 21 = 231
Jadi banyaknya cara membentuk tim ada 231 cara
B. RUANG SAMPEL DAN KEJADIAN
1. Ruang Sampel
Tahukah kamu, apa saja yang mungkin muncul ketika sebuah dadu dilempar sekali ?
Kemungkinan yang muncul adalah mata dadu 1, 2, 3, 4, 5 atau 6.
Jadi banyaknya himpunan semua kejadian yang mungkin pada pelemparan sebuah dadu sekali ada 6.
Himpunan semua kejadian yang mungkin dari suatu percobaan disebut Ruang Sampel atau Ruang Contoh biasa diberi lambang huruf S
Bagaimana kalau sebuah koin uang logam dilemparkan sekali, apa saja yang mungkin muncul?
S = {Angka, gambar}
n(S) = 2
2. Kejadian
Kejadian merupakan himpunan bagian dari ruang sampel.
Contoh 14:
Dua buah dadu dilemparkan bersamaan sekali, tentukan kejadian munculnya
a. jumlah kedua dadu 10
b. selisih kedua dadu 3
c. jumlah kedua dadu 5 dan selisihnya 1
d. jumlah kedua dadu 4 atau selisihnya 5
Penyelesaian:
Untuk mengerjakan soal ini kita lihat jawaban contoh 13.
a. Jumlah kedua dadu 10 ={(4, 6), (5, 5), (6, 4)}
Jadi banyaknya kejadian ada 3
b. Selisih kedua dadu 3 ={(1, 4), (2, 5), (3, 6), (4, 1), (5, 2), (6, 3)}
Jadi banyaknya kejadian ada 6
c. Jumlah kedua dadu 5 dan selisihnya 1 ={(2, 3), (3, 2)}
Jadi banyaknya kejadian ada 2
d. Jumlah kedua dadu 4 atau selisihnya 5 ={(1, 3), (2, 2), (3, 1), (1, 6), (6, 1}
Jadi banyaknya kejadian ada 5
C. PELUANG SUATU KEJADIAN
1. Peluang Suatu Kejadian
Sebelum mempelajari peluang suatu kejadian, marilah kita ingat kembali mengenai ruang sampel yang biasanya dilambangkan dengan S. Kejadian adalah himpunan bagian dari ruang sampel, sedangkan titik sampel adalah setiap hasil yang mungkin terjadi pada suatu percobaan. Jika A adalah suatu kejadian yang terjadi pada suatu percobaan dengan ruang sampel S, di mana setiap titik sampelnya mempunyai kemungkinan sama untuk muncul, maka peluang dari suatu kejadian A ditulis sebagai berikut.
n(A)
P(A) = ———
n(S )
Keterangan:
P(A) = peluang kejadian A
n(A) = banyaknya anggota A
n(S) = banyaknya anggota ruang sampel S
Contoh :
Pada pelemparan 3 buah uang sekaligus, tentukan peluang muncul:
a. ketiganya sisi gambar;
b. satu gambar dan dua angka.
Penyelesaian:
a. S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}
Maka n(S) = 8
Misal kejadian ketiganya sisi gambar adalah A.
A = {GGG}, maka n(A) = 1
n(A) 1
P(A) = ——— =——
n(S ) 8
b. Misal kejadian satu gambar dan dua angka adalah B.
B = {AAG, AGA, GAA}, maka n(B) = 3
n(B) 3
P(B) = ——— =——
n(S ) 8
Contoh:
Andi mengikuti acara Jalan Santai dengan doorprize 5 buah sepeda motor. Jika jalan santai tersebut diikuti oleh 1000 orang, berapakah peluang Andi mendapatkan doorprize sepeda motor?
Penyelesaian:
S = semua peserta jalan santai
maka n(S) = 1000
Misal kejadian Andi mendapatkan motor adalah A.
A = {Motor1, Motor2, Motor3, Motor4, Motor5}
maka n(A) = 5
n(A) 5 1
P(A) = ——— = ——— = ——
n(S ) 1000 200
1
Jadi peluang Andi mendapatkan doorprize sepeda motor ——
200
2. Kisaran Nilai Peluang
Untuk mengetahui kisaran nilai peluang, perhatikan soal berikut:
Contoh 18:
Sebuah dadu dilemparkan sekali, tentukan peluang munculnya
a. Mata dadu 8 b. Mata dadu kurang dari 7
Penyelesaian:
a. S = {1, 2, 3, 4, 5, 6}, n(S) = 6
misal kejadian muncul mata dadu 8 adalah A
A = { }, n(A) = 0
n(A) 0
P(A) = ——— = — = 0
n(S ) 6
Kejadian muncul mata dadu 8 adalah kejadian mustahil, P(A) = 0
b. S = {1, 2, 3, 4, 5, 6}, n(S) = 6
misal kejadian muncul mata dadu kurang dari 7 adalah B
B = {1, 2, 3, 4, 5, 6}, n(B) = 6
n(B) 6
P(B) = ——— = — = 1
n(S ) 6
Kejadian muncul mata dadu kurang dari 7 adalah kejadian pasti, P(A) = 1
Jadi kisaran nilai peluang: 0 ≤ P(A) ≤ 1
3. Frekuensi Harapan Suatu Kejadian
Frekuensi harapan dari sejumlah kejadian merupakan banyaknya kejadian dikalikan dengan peluang kejadian itu. Misalnya pada percobaan A dilakukan n kali, maka frekuensi harapannya ditulis sebagai berikut.
Fh = n × P(A)
Contoh 19:
Pada percobaan pelemparan 3 mata uang logam sekaligus sebanyak 240 kali, tentukan frekuensi harapan munculnya dua gambar dan satu angka.
Penyelesaian:
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG} ⇒ n(S) = 8
A = {AGG, GAG, GGA} ⇒ n(A) = 3
n(A) 3
Fh(A) = n × P(A) = 240 × —— = 240 × —— = 90 kali
n(S) 8
4. Peluang Komplemen Suatu Kejadian
Untuk mempelajari peluang komplemen, perhatikan contoh berikut.
Contoh:
Pada pelemparan sebuah dadu sekali, berapakah peluang munculnya:
a. nomor dadu ganjil,
b. nomor dadu tidak ganjil?
Penyelesaian:
a. S = {1, 2, 3, 4, 5, 6}, maka n(S) = 6.
A adalah kejadian keluar nomor dadu ganjil
A = {1, 3, 5}, maka n(A) = 3 sehingga
n(A) 3 1
P(A) = ——— =—— = —
n(S ) 6 2
b. B adalah kejadian keluar nomor dadu tidak ganjil
B = {2, 4, 6}, maka n(B) = 3 sehingga
n(B) 3 1
P(B) = ——— =—— = — , Peluang B adalah Peluang komplemen dari A
n(S ) 6 2
Dari contoh tersebut kita dapat mengambil kesimpulan bahwa:
P(A) + P(AC) = 1 atau P(AC) = 1 – P(A)
Contoh:
Pada pelemparan 3 buah uang sekaligus, tentukan peluang munculnya paling
sedikit satu angka !
Penyelesaian:
Cara biasa
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}, maka n(S) = 8
Misal kejadian paling sedikit satu angka adalah A.
A = {AAA, AAG, AGA, GAA, AGG, GAG, GGA}, maka n(A) = 7
n(A) 7
P(A) = ——— =——
n(S ) 8
Cara komplemen
S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}, maka n(S) = 8
Misal kejadian paling sedikit satu angka adalah A.
Ac = {GGG}, maka n(Ac) =1
n(Ac) 1
P(Ac) = ——— =——
n(S ) 8
1 7
P(A) = 1 – P(Ac) = 1 – —— = ——
8 8
5. Peluang Kejadian Majemuk
a. Peluang Gabungan 2 kejadian
Misal A dan B adalah dua kejadian yang berbeda, maka peluang kejadian
A ∪ B ditentukan dengan aturan:
P(A ∪ B) = P(A) + P(B) – P(A∩B)
Contoh:
Sebuah dadu dilambungkan sekali, jika A adalah kejadian munculnya bilangan ganjil dan B adalah kejadian munculnya bilangan prima. Tentukan peluang kejadian munculnya bilangan ganjil atau prima!
Penyelesaian:
S = {1, 2, 3, 4, 5, 6}
A = bilangan ganjil : {1, 3, 5} → P(A) = 3/6
B = bilangan prima : {2, 3, 5} → P(B) =3/6
A∩B = {3, 5} → P{A∩B} = 2/6
P(A∪ B) = P(A) + P(B) – P(A∩B)
= 3/6 + 3/6 – 2/6 = 4/6 = 2/3
Jadi peluang kejadian munculnya bilangan ganjil atau prima adalah 2/3
Contoh:
Diambil sebuah kartu dari 1 set kartu bridge, tentukan peluang terambilnya kartu As atau kartu Hati!
Penyelesaian:n(S) = 52 (karena banyaknya kartu dalam 1 set kartu bridge 52)
A = kartu As, n(A) = 4 (Banyaknya kartu As dalam1 set kartu bridge 4)
4
P(A) = ——
52
B = kartu Hati, n(B) = 13 (Banyaknya kartu Hati dalam1 set kartu bridge 13)
13
P(B) = ——
52
n(A∩B) = 1 (Banyaknya Kartu As dan Hati dalam1 set kartu bridge 1)
1
P(A∩B) = ——
52
4 13 1 16
P(A∪ B) = P(A) + P(B) – P(A∩B) = —— + —— – —— =——
52 52 52 52
16
Jadi peluang kejadian terambilnya kartu As atau Hati adalah ——
52
b. Peluang Kejadian Saling Lepas (Saling Asing)
Kejadian A dan B saling asing jika kedua kejadian tersebut tidak mungkin terjadi bersama-sama. Ini berarti A∩B = 0 atau P(A∩B) = 0
Sehingga: P (A∪ B) = P(A) + P(B) – P(A∩B) = P(A) + P(B) – 0
P (A∪ B) = P(A) + P(B)
Contoh:
Sebuah dadu dilambungkan sekali, jika A adalah kejadian munculnya bilangan ganjil dan B adalah kejadian munculnya bilangan genap. Tentukan peluang kejadian munculnya bilangan ganjil atau genap!